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Abstract
As was shown earlier (Dzero M O, Gor’kov L P and Zvezdin A K 2000 J.
Phys.: Condens. Matter 12 L711), the properties of the first-order valence phase
transition in YbInCu4 over a wide range of magnetic fields and temperatures
can be perfectly described on the basis of a simple entropy transition for free
Yb ions. Within this approach, the crystal-field effects have been taken into
account and we show that the phase diagram in the B–T plane acquires some
anisotropy with respect to the direction of an external magnetic field.

As is well known, YbInCu4 undergoes a first-order valence transition at 42 K, accompanied
by a small change in volume of the order of 0.5%. This transition is quite similar to the γ –α

transition in metallic Ce (for the phase diagram of Ce, see [1]). It turns out that YbInCu4

is the only stoichiometric compound known in which an isostructural valence transition at
ambient pressure has been observed [2]. However, as was pointed out in [2], the isostructural
valence transition is just the extreme limit of the very common competition that occurs between
local-moment and itinerant behaviour in many strongly correlated compounds.

The valence transition induced by an external magnetic field in YbInCu4 and its alloys
has been studied in [3]. The most interesting result of [3] is that the data extracted from the
resistance measurements can be used to collapse all of the pressure-dependent data, as well
as those from doped variants of YbInCu4 at ambient pressure, onto a universal B–T phase
diagram (here B is magnetic field, T is temperature).

The physics which may be responsible for the transition in YbInCu4 has been discussed
by several authors. One of the first attempts to describe the transition in metallic Ce, the
one which is similar to the transition in YbInCu4, was the proposal of the Falicov–Kimball–
Ramirez (FKR) model [10]. Another approach in which the γ –α transition is ascribed to
Mott’s first-order transition in a subsystem of f electrons was first discussed in [11].

Very often the γ –α transition in Ce is interpreted on the basis of the Kondo volume-
collapse (KVC) model [12, 13]. In the KVC model Ce atoms at the transition are treated as
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Ce3+ ions in both the α- and γ -phases (approximately one electron in the f shell), although in
the two different Kondo regimes. As is known, the Anderson impurity model reproduces the
Kondo behaviour in the regime when charge fluctuations are fully suppressed, and provides
for TK the expression

TK ∝ exp

{
−|ε∗

f |
�

}
(1)

where |ε∗
f | is the effective position of the localized level below the chemical potential and the

level width � ∝ V 2ν(εF) depends on the hybridization matrix element, V , and the density
of states at the Fermi level, ν(εF). The KVC model [12] connects the first-order transition
with strong non-linear dependence of the Kondo scale (1) (|ε∗

f | � �) on the volume through
the volume dependence of the hybridization matrix element (in Ce the change in the unit-cell
volume is large: δv/v ∼ 20%!)

Nevertheless, the KVC model seems not to be applicable in the case of YbInCu4, where
the volume changes are extremely small [5, 6]. For that reason, the FKR model has recently
been revisited in [14]. It is interesting that, although being somewhat sensitive to the choice of
the model parameters, the elliptic shape for the phase transition line in the B–T plane observed
in [3] is preserved in the calculations [14]. This is probably due to the same mechanism as
the above, i.e. due to large differences between the energy scales for the two phases (it seems
however that the constant a in (2) strongly depends on the parameter choice).

As was discussed in [4], the universality of the first-order transition line for YbInCu4 and
its alloys in the B–T plane can be described on the basis of an entropy first-order transition
between the local-f-moment phase and another phase with a compensated moment. It was
also suggested in [4] that the mixed-valence transition is driven by the change in the electronic
screening: the high-temperature phase can be described as a band-like semimetal with a small
carrier concentration and accordingly screening is weak, which favours localization of the
f electrons. At lower temperatures, after a phase transition occurred, even the f electrons
formed a band state, so a small change in occupation numbers would not forbid the emergence
of a large f-like Fermi surface.

In this paper we would like to address the issue of how the phase diagram of YbInCu4 in
the B–T plane is affected by taking into account the crystal-field effects and, as a consequence,
the appearance of anisotropy in the phase diagram with respect to the direction of an applied
field. We also would like to analyse the relation obtained experimentally in [5, 6]:

aµBBc0 = Tv0 (2)

on the basis of the crystal-field Hamiltonian:

Ĥ = Ĥcrystal + gJ µB Ĵ · B. (3)

When a magnetic ion is placed in a cubic environment, the spatial degeneracy of its angular
momentum is removed by the electrostatic field due to the neighbouring charges. For example,
the J = 5/2 multiplet for a Ce ion is split into a �7 doublet and �8 quartet while the J = 7/2
multiplet of an Yb ion is split into a �6 doublet, �7 doublet and �8 quartet.

For J = 7/2 the wavefunctions for the representations �6, �7 and �8 are given by [7]

�6:




ψ1 =
√

5
12 |+ 7

2 〉 +
√

7
12 |− 1

2 〉

ψ2 =
√

5
12 |− 7

2 〉 +
√

7
12 |+ 1

2 〉
(4)

�7:

{
ψ3 =

√
3

2 |+ 5
2 〉 − 1

2 |− 3
2 〉

ψ4 =
√

3
2 |− 5

2 〉 − 1
2 |+ 3

2 〉
(5)
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�8:




ψ5 =
√

7
12 |+ 7

2 〉 −
√

5
12 |− 1

2 〉

ψ6 =
√

5
12 |− 7

2 〉 −
√

7
12 |+ 1

2 〉
ψ7 = 1

2 |+ 5
2 〉 +

√
3

2 |− 3
2 〉

ψ8 = 1
2 |− 5

2 〉 +
√

3
2 |+ 3

2 〉.

(6)

According to [4] the first-order transition line in the B–T plane is determined by the
equation

T S(B, T ) = constant. (7)

The entropy is determined by the Yb3+ multiplet structure only. Taking the crystal splitting
effects into account, the entropy is given by

T S(B, T ) = −T ln

{ 8∑
n=1

exp

(
−λn

T

)}
(8)

where λn are the eigenvalues, obtained by solution of the eigenvalue problem (3) for
wavefunctions (4)–(6).

Now we have to find eigenvalues λn. Rewriting the last term in (3) as

gJ µB Ĵ · B = Ĵzβz + Ĵ+β− + Ĵ−β+ (9)

where Ĵ± = Ĵx ± iĴy and β± = (gJ µB/2)(Bx ± iBy), βz = gJ µBBz, the matrix elements Hij

of (3) are given by

Hij =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

E6 + 7
6 βz

7
3 β− 0 0

√
35
3 βz − 7

3 β−
√

35
3 β+ 0

7
3 β+ E6 − 7

6 βz 0 0 −
√

35
3 β+ −

√
35
3 βz 0

√
35
3 β−

0 0 E7 + 3
2 βz −3β+ 3β− 0

√
3βz

√
3β+

0 0 −3β− E7 − 3
2 βz 0

√
35
2 β+

√
3β− −√

3βz
√

35
3 βz −

√
35
3 β− 3β+ 0 E8 + 11

6 βz

√
35
3 β− − 2√

3
β+ 0

− 7
3 β+ −

√
35
3 βz 0

√
35
2 β−

√
35
3 β+ E8 − 11

6 βz 0 −
√

35
12 β−√

35
3 β− 0

√
3βz

√
3β+ − 2√

3
β− 0 E8 − 1

2 βz 3β+

0
√

35
3 β+

√
3β− −√

3βz 0 −
√

35
12 β+ 3β− E8 + 1

2 βz

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

(10)

where the matrix elements of Ĥcrystal are defined as

〈�6|Ĥcrystal|�6〉 = E6 〈�7|Ĥcrystal|�7〉 = E7 〈�8|Ĥcrystal|�8〉 = E8. (11)

As it turns out, the secular equation

det ‖Hij − λδij‖ = 0

with the Hamiltonian matrix given by (10) cannot be solved exactly in its general form, but
there exist exact solutions for particular cases, such as B = (0, 0, Bz). The eigenvalues in that
case are

λ1,2(βz) = 1
2

{
E6 + E8 + 24

7 βz ±
√(

E6 − E8 − 16
21βz

)2
+ 8960

441 β2
z

}
(12)

λ3,4(βz) = 1
2

{
E6 + E8 − 24

7 βz ±
√(

E6 − E8 + 16
21βz

)2
+ 8960

441 β2
z

}
(13)

λ5,6(βz) = 1
2

{
E7 + E8 + 8

7βz ±
√(

E7 − E8 + 16
7 βz

)2
+ 768

49 β2
z

}
(14)

λ7,8(βz) = 1
2

{
E7 + E8 − 8

7βz ±
√(

E7 − E8 − 16
7 βz

)2
+ 768

49 β2
z

}
. (15)
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Figure 1. The phase diagram for YbInCu4 shows some anisotropy with respect to the direction
of the external magnetic field: B along one of the main cubic axes (dashed curve), B in the easy
plane (solid black curve) and B along the one of the main cubic diagonals (solid grey curve).

In what follows we present the numerical result for when the external field is in the plane
B = (Bx, By, 0) and the analytical solution for the case mentioned above.

Now, we can define the constant in equation (7) as follows:

T S(B, T ) = Tv0S0(0, Tv0)

S0 = ln

[
4 + 2 exp

(
−δE6,8

Tv0

)
+ 2 exp

(
−δE7,8

Tv0

)]
.

(16)

According to [8], δE6,8 = E6 − E8 � 3.2 meV and δE7,8 = E7 − E8 � 3.8 meV.
As we already mentioned, equation (16) defines a phase diagram in the B–T plane. The

results of our calculation are plotted in figure 1. As we can see, there is a strong anisotropy in
the phase diagram with respect to the direction of the external magnetic field. We also have
calculated the magnetization as a function of the external magnetic field for a given temperature
(figure 2). As it turns out, the magnetization also depends on the direction of the applied field.

In the rest of the paper, we would like to produce an equation for the phase boundary,
when B = (0, 0, Bz). Let us introduce the following notation:

b = B/Bv0 τ = T/Tv0 tan(ϕ) = b/τ
(

0 < ϕ <
π

2

)
.

Then

τ = Ũ−1(ϕ) (17)

b = Ũ−1(ϕ) tan(ϕ) (18)

Ũ−1(ϕ) = 1

S(0, Tv0)

8∑
n=1

exp[−λ̃n(ϕ)] (19)

with λ̃n(ϕ) being the eigenvalues (12)–(15). Thus, the equation for the phase transition line is
given by

b2 + τ 2 = R(ϕ) R(ϕ) = [cos(ϕ)Ũ(ϕ)]−2.
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Figure 2. The magnetization curve shows some anisotropy with respect to the direction of the
external magnetic field in agreement with our result for the phase diagram where the same type of
anisotropy is found. The calculations were performed for T = 0.75Tv0.
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Figure 3. Deviations of R(ϕ) from 1 do not exceed 10%.

As we see in figure 3, deviations of R(ϕ) from 1 do not exceed 10%. Generally speaking,
as one may see from table 1, the a-value is relatively robust with respect to including new types
of interaction (or anisotropy) in our model. For example, if one takes the susceptibility of a
lower phase into account, it decreases a by reducing the value for the net moment µ which in
our case is less then 4µB , and the latter corresponds to the free-ion model, but on the other hand
it increases a by reducing the change in the entropy at T = Tv0. As we see from the results
of our calculations of Bc0 (table 1), when only crystal-field effects are taken into account, the
change in a is less than 10%.
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Table 1. Values of Bc0 and a obtained from the phase diagram (figure 1) for different magnetic
field orientations.

Field orientation Bc0 (T) a

[001] 30.9 2.29
[111] 30.1 2.34
[110] 31.95 2.24

We should mention that although the crystal-field effects do not change the value of the
a-parameter in (2), this is not the case if one is trying to verify relation (2) on the basis of an
exact solution for the Kondo model with J = 7/2 [9]. As it turns out, in that case, the value
of a strongly depends on the energy scale, given by TK. This result is in fact similar to the
result obtained by [14] using the dynamical mean-field theory (DMFT) approach based on the
FKR model. Thus, the experimentally verified existence of anisotropy in the phase diagram
will serve as proof of our initial idea of a free-Yb-ion model.

To summarize, we have shown that the phase diagram for the first-order valence transition
in YbInCu4 in the B–T plane acquires some anisotropy with respect to the direction of an
external magnetic field if crystal-field-split multiplets are taken into consideration. We have
also found that, within the present framework, the anisotropy of the critical field value Bc0 is
of the order of �2 T and in principle can be seen experimentally.

Preliminary experiments have been carried out in the National High Magnetic Field
Laboratory (Tallahassee), and showed relatively good agreement with theoretical predictions
based on of the present model [15].
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